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Abetract 

An apprarimctting dgorithmfor computing equivalent acgncS off” of the modificcl AIlan 
variance and Us squcuc root, the nudifiea Allan deviation (MYAR d MDEV), and the time variance 
and time ddvidion and TDEY) is pracntod, along with an algorithm for approximating 
the inverse chi-squured distribution. These two algorithms alfow nhtivdy simple compuiationS of 
confidence wCw& on MDEV and T D E q  the h#ct currently used as a standard &I the &om- 
municcrfions industry. These algorithms enuble users & present vcuicurce results with confidence 
intervals corresponding to any useful probabilitp for most data Iengths and noisc types. 

1 INTRODUCTION 

We present here a simplified algorithm for calculating approximate confidence intervals on the 
modified Allan deviation, MDEV, and therefore also on the related time deviation TDEV. The 
algorithm has two parts: the first gives approximate equivalent degrees of freedom, edf, for 
the fully overlapped estimate of MVAR; the sccond gives approximate values of the inverse 
chj-squared distribution. An algorithm for estimating edf for the other measure commonly used 
in time and frequency metrology, the original Allan deviation, was published previously.[ll 
Confidence intervals are defined in terms of edf and the chi-squared distribution as follows. 
If s2 denotes the usual sample variance of n independent and identically distributed Gaussian 
measurements (white noise) with actual variance d, then 

‘~ntributiions of the US. government are not rub&& to copyright. 
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National Auonautice and Space Administration 
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has a chi-squared distribution with u = n - 1 degrees of fieedom.[21 In the classical 
the number of degrees of freedom associated with a* is an integer value depending 
number of measurements, and exact confidence limits on the measurement variance are easily 
calculated using percentiles of the appropriate chi-squared distribution. For example, Figure 1 ; 
shows the chi-squared distribution with 10 degrees of freedom, and also depicts the percentiles 
a and b that are needed to calculate uncertainty bounds on u2 at the 0.95 confidence level from 
a particular u2 based on 11 Gaussian measurements. 
A 95% confidence interval is obtained as follows. First, we find values a and b such that the 
probability is 0.95 that U of Eq. (1) lies between a and b. This condition is equivalent to ea& 
of the following inequalities: 

a < - - u < &  
S2 

U2 

The lower and upper bounds in the final inequality are confidence limits on the unknown 
variance 9. Note that the confidence factors u/b and u/a needed in the calculations are 
independent of the actual data. They give the magnitude of the confidence interval as a 
function of the number of points used to compute the variance. Hence, we can compute these 
confidence factors for vhous  data lengths. The factors 1 - u/b and u/a - 1 give the multipliers 
for the magnitude of the lower and upper confidence intervals on the variances, respectively. 
For deviations such as TDEV, the corresponding multipliers are 1 - 
Since the common time and frequency stability measures (AVAR, MVAR, WAR) are calculated 
from data arising from non-white noise processes, the confidence limit procedure outlined above 
is an approximate methodP1 that is based on approximating the distriiution of U in Eq. (1) 
with the chi-squared distri'bution with degrees of freedom 

and - 1. 

where d represents the appropriate stability measure, WAR, for example, 2 represents its 
corresponding estimator, and V O ~  (3) is the variance of the 82 estimator. The quantity U, which 
now depends on the noise type, is called the equivalent degrees of freedom, edc since it need 
not be integer-valued. 
In this contri'bution we have combined a previously published edf approximation algorithd'l 
with an algorithm for approximating the inverse of the chi-squared distribution function. The 
latter algorithm is based on work of Barnes used in deriving tables in [SI, but not published, 
and formulas from Abramowitz and Stegun (A&S).[q Previously, tables for confidence of 
TDEV and MDEV were published in [q. These are exact computations for edf and the 
associated confidence intervals for various cases in computing TDEV and MDEV. We compare 
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values approximating the exact edf and confidence factors in tables in [q, finding a worst 
c8se disagreement of -9.7% for the edf and +10.8% for the confidence intervals. Most cases 
are much better than that. The confidence intervals are pessimistic if they are too large and 
optimistic if they are too small. In many cases here, pe_ssimism is better than optimism, since 
the true value of the variance is more certain to lie in a larger range than a smaller. For the 
comparison with the published tables the confidence intervals are no smaller than -3.3%. 

2 APPROXIMATION FOR EQUIVALENT DEGRESS OF 
FREEDOM 
This version of the formula is restricted to the case of the usual fully overlapped estimator of 
MVAR or WAR ([8], Eq. (12); [4], Eq. (6), ml = 1). 

Let 

N = number of time residuals, 
m = averaging time / sample period, 
M = N - 3m + 1, the number of terms summed in the estimate, 
q = M/m. 

Restrictions: 

N 2 16, 

m I N/5. 

The approximate edf is given by 
a09 

4f = 1 - q / q '  

where and u1 are given in lhble I as functions of m and the noise type. 

Table I. Coefficients for Approximate edf Calculation 

m = l  m=2  m > 2  
Noise m e  a0 a1 a0 a1 a0 a1 
White PM 
Flicker PM 
White FM 0.667 0 1.010 0 0.968 0.571 
Flicker FM 0.811 0 1.027 0 0.947 0.416 

Random-Walk FM 1.OOO 0 0.866 0 0.768 0.411 

8% 8 8% 8 ;:E 8E 

(4) 

Under the assumptions given above, a maximum error of 11.1% in this approximation has been 
observed. Usually, it is much less. 
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3 APPROXIMATION FOR INVERSE OF CHI-SQUARED 
DISTRIBUTION .. 

Let U be a chi-squared random variable with u degrees of freedom (u can be nonintegml) 
Let o p < 1. Define x = x(p, u) as the loop percentile of the distribution of U; thus p is fid 
probability that U c x. The algorithm given below computes an approximation to X .  

Restrictions: 

U l 1 ,  
0.005 5 p 5 0.995. 

Maximum observed error with these restrictions: 3% 

if p <  and u <  10 then 

! Method: truncate power series in A&S [SI 26.4.6, invert by iteration 

! Calculation of G = r (1 + a) (AcQS 6.135) 
a = u/2 

constants: q = -0.5748646, q = 0.9512363, q = -0.SssS588, 4 = 0.4245549, Q = 

n = integer part of a 
y = a - n  
G =  1 + ~ i y  + qd +c& +cry'+ cay6 
f o r k =  1 t o n  ! Do nothhg if n=O 

next k 

-0.1010678 

G = G(y + k) 

A = p G  
u = o  
for i = l  to 7 

g = l+ql+-&(l+A)) a + l  

next i 
x = 2u 

else 

! Method: A&S 26.4.17 
m = min(P, 1 -P) 
! Calculation of X = inverse of normal distribution at 1 -p1 (A&S 26.2.22) 

constants: a0 = 2.30753, ai = 0.27601, b, = 0.99229, = 0.04481 
t = m E  
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b = 2/ ( 9 ~ )  
9 

2 = I, (1 - b + 8x4)  

1 4 A NUlMERICAL EXAMPLE 
Before giving tabular results, we show by example how they are used and how they are calculated 
by the algorithms given above. Assume the situation of the last line of Bible I1 below: white 
PM noise, 1,025 time residuals, and averaging time = 128 sample periods. Suppose that an 
MDEV value 8 is computed by a fully overlapped estimate. The tabulated 95% lower and upper 
factors are 33.89% and 104.1%. Therefore, a 95% confidence interval for the true MDEV is 

The tabulated edf and confidence factors are obtained as follows: N =l,OW, m = 128, M = 
1025-3~128+1 = 642 (the number of summands in the estimate), q = M/m =5.0156, = 
1.225, ul = 0.589 from 'IBble I, edf = 6.9617 from Eq. (4). For 95% confidence we need to 
compute the 2.5% and 975% chi-squared levels. The inverse chi-squared algorithm, with Y = 
6.9617 and p = 0.025, gives 2 = 1.6720 as the 25% level, denoted by a in Eq. (2). Similarly, 
the 97.5% level is 15.928, denoted by b. The computed confidence factors are 1 - = 
03389, m- 1 = 1.0405. (Note that the values in Table I1 were computed from values of 
and al having more significant digits than the ones given in Table I.) 

5 RESULTS 
The data in the tables are the results for white PM with fully overlapped estimates. Table I1 
gives the approximate edf and confidence factors. Bble I11 gives the percentage errors from 
the exact values as found in [q. The errors for white PM are the largest of the various noise 

0.661 8 2.041 8.  

i 
1 
1 
1 

t b  

5 types. 
'3 
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mble II. Approximate edf and Confidence hctore  

Noise m e :  White PM 
N m edf lower 68% upper 68% lower 95% upper 95% 
17 1 7.714 17.74 39.14 32.79 94.61 
17 
33 
33 
33 
65 
65 
65 
65 

129 
129 
129 
129 
129 
257 
257 
257 
257 
257 
257 
513 
513 
513 
513 
513 
513 
513 

1025 
1025 
1025 
1025 
1025 
1025 
1025 

2 5.610 
1 15.94 
2 13.09 
4 7.543 
1 32.40 
2 28.05 
4 17.29 
8 7.241 
1 65.31 
2 57.97 
4 36.86 
8 16.98 

16 7.091 
1 131.1 
2 117.8 
4 76.04 
8 36.55 

16 16.83 
32 7.016 
1 262.8 
2 237.5 
4 154.4 
8 75.73 

16 36.40 
32 16.75 
64 6.978 
1 526.1 
2 476.9 
4 311.1 
8 154.1 

16 75.58 
32 36.32 
64 16.71 

1025 128 6.959 

19.67 
13.65 
14.71 
17.87 
10.29 
10.91 
13.23 
18.12 
7.622 
8.030 
9.746 
13.33 
18.24 
5.579 
5.857 
7.128 
9.780 
13.37 
18.31 
4.045 
4.241 
5.177 
7.141 
9.798 
13.40 
18.34 
2.913 
3.052 
3.737 
5.182 
7.148 
9.806 
13.41 
18.36 

50.41 
23.38 
26.67 
39.82 
14.96 
16.33 
22.17 
41.10 
9.916 
10.62 
13.84 
22.43 
41.78 
6.715 
7.123 
9.095 
13.91 
22.56 
42.13 
4.610 
4.867 
6.141 
9.116 
13.95 
22.63 
42.30 
3.195 
3.363 
4.214 
6.148 
9.126 
13.97 
22.67 
42.39 

3634 
25.52 
27.40 
33.03 
19.46 
20.60 
24.78 
33.47 
14.58 
15.33 
18.48 
24.94 
33.69 
10.76 
11.28 
13.66 
18.54 
25.02 
33.80 
7.856 
8.229 
10.00 
13.68 
18.57 
25.07 
33.86 
5.685 
5.954 
7.267 
10.01 
13.69 
18.59 
25.09 
33.89 

128.7 
52.42 
60.97 
96.58 
31.99 
35.19 
49.37 
100.3 
20.63 
22.17 
29.42 
50.03 
102.3 
13.74 
14.60 
18.84 
29.58 
50.36 
103.3 
9.332 
9.864 
12.53 
18.89 
29.66 
50.53 
103.8 
6.421 
6.766 
8.513 
12.54 
18.91 
29.70 
50.62 
104.1 
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'Jpable III. Percentage Error: 100 (Approzimate - Corred) /Correct 

Noise w e :  White PA4 
- 

N m edf lower 68% upper 68% lower 95% upper 95% 
3.2 17 1 -3.4 0.2 

10.8 
1.4 
3.7 

n n  .n 
4.4 1.u 

17 
33 
33 
33 
65 
65 
65 
65 

129 
129 
129 
129 
129 
257 
257 
257 
257 
257 
257 
513 
513 
513 
513 
513 
513 
513 

1025 
1025 
1025 
1025 
1025 
1025 
1025 
1025 

2 -9.7 
1 -1.6 
2 -4.2 
4 3.4 
1 -0.8 
2 -2.0 
4 3.9 
8 -3.6 
1 -0.4 
2 -1.0 
4 4.0 
8 -2.9 

16 -5.3 
1 -0.2 
2 -0.5 
4 4.1 
8 -2.7 

16 4 . 6  
32 -5.8 
1 -0.1 
2 -0.2 
4 4.1 
8 -2.6 

16 -4.4 
32 -5.0 
64 -5.9 
1 -0.1 
2 -0.1 
4 4.2 
8 -2.6 

16 4 . 3  
32 -4.8 
64 -5.2 

128 -5.9 

2.2 
-0.1 

0.8 
-2.1 
-0.3 

0.1 
-2.2 

0.3 
-0.4 
-0.2 
-2.3 

0.4 
0.9 

-0.5 
-0.4 
-2.4 

0.5 
1.1 
1 .o 

-0.5 
-0.5 
-2.4 

0.6 
1.2 
1.3 
1 .o 

-0.5 
-0.5 
-2.5 

0.6 
1.3 
1.4 
1.3 
1 .o 

8.4 
0.2 
2.0 

-2.9 
-0.2 

0.5 
-3.3 

2.4 
-0.4 
-0.1 
-3.0 

1.1 
3.9 

-0.5 
-0.3 
-2.9 

1 .o 
2.3 
4.3 

-0.5 
-0.5 
-2.8 

0.9 
2.0 
2.6 
4.4 

-0.5 
-0.5 
-2.7 

0.8 
1.9 
2.2 
2.6 
4.4 
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3.0 
0.5 
1.4 

-1.2 
0.2 
0.6 

-1.5 
1.0 
0.0 
0.3 

-1.7 
1.0 
1.6 

-0.1 
0.0 

-1.9 
1.0 
1.6 
1.8 

-0.1 
0.0 

-1.9 
1.0 
1.7 
1.8 
1.8 

-0.1 
-0.1 
-2.0 

1.0 
1.7 
1.8 
1.9 
1.8 

-3.1 
0.5 
1.3 

-2.6 
3.4 
0.1 
0.5 

-2.6 
2.3 
5.2 

-0.1 
0.1 

-2.5 
1.7 
3.6 1 
5.7 

-0.1 
0.0 

-2.4 
1.4 
2.8 
4.0 
5.8 

-0.1 

-2.4 
-0.1 4 

1.3 
2.5 1 

3.1 
4.1 
5.8 



I \ Each Area = 0.025 

a b 

Figure 1 Finding the 95% confidence limits under the chi- 
squared distribution with 10 degrees of fieedom 


